Аннотация:
The $\theta$-deformed Hopf fibration $\mathbb{S}^3_\theta\to \mathbb{S}^2$ over the commutative $2$-sphere is compared with its classical counterpart. It is shown that there exists a natural isomorphism between the corresponding associated module functors and that the affine spaces of classical and deformed connections are isomorphic. The latter isomorphism is equivariant under an appropriate notion of infinitesimal gauge transformations in these contexts. Gauge transformations and connections on associated modules are studied and are shown to be sensitive to the deformation parameter. A homotopy theoretic explanation for the existence of a close relationship between the classical and deformed Hopf fibrations is proposed.
Ключевые слова:noncommutative geometry, principal comodule algebras, noncommutative principal bundles, Hopf fibrations, homotopy equivalence.