RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 012, 17 стр. (Mi sigma1549)

Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups

Dave Witte Morris

Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada

Аннотация: We say that a subset $X$ quasi-isometrically boundedly generates a finitely generated group $\Gamma$ if each element $\gamma$ of a finite-index subgroup of $\Gamma$ can be written as a product $\gamma = x_1 x_2 \cdots x_r$ of a bounded number of elements of $X$, such that the word length of each $x_i$ is bounded by a constant times the word length of $\gamma$. A. Lubotzky, S. Mozes, and M.S. Raghunathan observed in 1993 that ${\rm SL}(n,{\mathbb Z})$ is quasi-isometrically boundedly generated by the elements of its natural ${\rm SL}(2,{\mathbb Z})$ subgroups. We generalize (a slightly weakened version of) this by showing that every $S$-arithmetic subgroup of an isotropic, almost-simple ${\mathbb Q}$-group is quasi-isometrically boundedly generated by standard ${\mathbb Q}$-rank-1 subgroups.

Ключевые слова: arithmetic group, quasi-isometric, bounded generation, discrete subgroup.

MSC: 22E40; 20F65; 11F06

Поступила: 16 августа 2019 г.; в окончательном варианте 5 марта 2020 г.; опубликована 11 марта 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.012



Реферативные базы данных:
ArXiv: 1908.02365


© МИАН, 2024