Quasi-Isometric Bounded Generation by ${\mathbb Q}$-Rank-One Subgroups
Dave Witte Morris Department of Mathematics and Computer Science, University of Lethbridge, Lethbridge, Alberta, T1K 3M4, Canada
Аннотация:
We say that a subset
$X$ quasi-isometrically boundedly generates a finitely generated group
$\Gamma$ if each element
$\gamma$ of a finite-index subgroup of
$\Gamma$ can be written as a product
$\gamma = x_1 x_2 \cdots x_r$ of a bounded number of elements of
$X$, such that the word length of each
$x_i$ is bounded by a constant times the word length of
$\gamma$. A. Lubotzky, S. Mozes, and M.S. Raghunathan observed in 1993 that
${\rm SL}(n,{\mathbb Z})$ is quasi-isometrically boundedly generated by the elements of its natural
${\rm SL}(2,{\mathbb Z})$ subgroups. We generalize (a slightly weakened version of) this by showing that every
$S$-arithmetic subgroup of an isotropic, almost-simple
${\mathbb Q}$-group is quasi-isometrically boundedly generated by standard
${\mathbb Q}$-rank-1 subgroups.
Ключевые слова:
arithmetic group, quasi-isometric, bounded generation, discrete subgroup.
MSC: 22E40;
20F65;
11F06 Поступила: 16 августа 2019 г.; в окончательном варианте
5 марта 2020 г.; опубликована
11 марта 2020 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2020.012