Эта публикация цитируется в	
			8 статьях
				
			
				Short Star-Products for Filtered Quantizations, I
			
			Pavel Etingof, 	
Douglas Stryker		 Department of Mathematics, MIT, Cambridge, MA 02139, USA
					
			Аннотация:
			We develop a theory of short star-products for filtered quantizations of graded Poisson algebras, introduced in 2016 by Beem, Peelaers and Rastelli for algebras of regular functions on hyperKähler cones in the context of 3-dimensional 
$N=4$ superconformal field theories [Beem C., Peelaers W., Rastelli L., 
Comm. Math. Phys. 354 (2017), 345–392]. This appears to be a new structure in representation theory, which is an algebraic incarnation of the non-holomorphic 
${\rm SU}(2)$-symmetry of such cones. Using the technique of twisted traces on quantizations (an idea due to Kontsevich), we prove the conjecture by Beem, Peelaers and Rastelli that short star-products depend on finitely many parameters (under a natural nondegeneracy condition), and also construct these star products in a number of examples, confirming another conjecture by Beem, Peelaers and Rastelli.
				
			
Ключевые слова:
			star-product, quantization, hyperKähler cone, symplectic singularity.	
			
MSC: 06B15; 
53D55	Поступила: 1 октября 2019 г.; в окончательном варианте 
1 марта 2020 г.; опубликована 
11 марта 2020 г.	
			Язык публикации: английский	
			
DOI:
			10.3842/SIGMA.2020.014