RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2020, том 16, 018, 17 стр. (Mi sigma1555)

Эта публикация цитируется в 8 статьях

Finite-Dimensional Irreducible Modules of the Racah Algebra at Characteristic Zero

Hau-Wen Huanga, Sarah Bockting-Conradb

a Department of Mathematics, National Central University, Chung-Li 32001, Taiwan
b Department of Mathematical Sciences, DePaul University, Chicago, Illinois, USA

Аннотация: Assume that $\mathbb{F}$ is an algebraically closed field with characteristic zero. The Racah algebra $\Re$ is the unital associative $\mathbb{F}$-algebra defined by generators and relations in the following way. The generators are $A$, $B$, $C$, $D$ and the relations assert that $[A,B]=[B,C]=[C,A]=2D$ and that each of $[A,D]+AC-BA$, $[B,D]+BA-CB$, $[C,D]+CB-AC$ is central in $\Re$. In this paper we discuss the finite-dimensional irreducible $\Re$-modules in detail and classify them up to isomorphism. To do this, we apply an infinite-dimensional $\Re$-module and its universal property. We additionally give the necessary and sufficient conditions for $A$, $B$, $C$ to be diagonalizable on finite-dimensional irreducible $\Re$-modules.

Ключевые слова: Racah algebra, quadratic algebra, irreducible modules, tridiagonal pairs, universal property.

MSC: 81R10; 16S37

Поступила: 12 ноября 2019 г.; в окончательном варианте 16 марта 2020 г.; опубликована 24 марта 2020 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2020.018



Реферативные базы данных:
ArXiv: 1910.11446


© МИАН, 2024