Эта публикация цитируется в
3 статьях
New Explicit Lorentzian Einstein–Weyl Structures in 3-Dimensions
Joël Merkera,
Paweł Nurowskib a Laboratoire de Mathématiques d'Orsay, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay Cedex, France
b Centrum Fizyki Teoretycznej, Polska Akademia Nauk,
Al. Lotników 32/46, 02-668 Warszawa, Poland
Аннотация:
On a
$3$D manifold, a
Weyl geometry consists of pairs
$(g, A) =$ (metric,
$1$-form) modulo gauge
$\widehat{g} = {\rm e}^{2\varphi} g$,
$\widehat{A} = A + {\rm d}\varphi$. In 1943, Cartan showed that every solution to the Einstein–Weyl equations
$R_{(\mu\nu)} - \frac{1}{3} R g_{\mu\nu} = 0$ comes from an appropriate
$3$D leaf space quotient of a
$7$D connection bundle associated with a 3
$^{\mathrm{rd}}$ order ODE
$y''' = H(x,y,y',y'')$ modulo point transformations, provided
$2$ among
$3$ primary point invariants vanish
\begin{gather*}
\text{Wunschmann}(H) \equiv 0\equiv \text{Cartan}(H).
\end{gather*}
We find that point equivalence of a single PDE
$z_y = F(x,y,z,z_x)$ with para-CR integrability
$DF := F_x + z_x F_z \equiv 0$ leads to a
completely similar $7$D Cartan bundle and connection. Then magically, the (complicated) equation
$\text{Wunschmann}(H) \equiv 0$ becomes
\begin{gather*}
0\equiv\text{Monge}(F):=9F_{pp}^2F_{ppppp}-45F_{pp}F_{ppp}F_{pppp}+40F_{ppp}^3,\qquad p:=z_x,
\end{gather*}
whose solutions are just conics in the
$\{p, F\}$-plane. As an ansatz, we take
\begin{gather*}
F(x,y,z,p):= \frac{\alpha(y)(z-xp)^2\!+\beta(y)(z-xp)p+\gamma(y)(z-xp) +\delta(y)p^2\!+\varepsilon(y)p+\zeta(y)}{\lambda(y)(z-xp)+\mu(y) p+\nu(y)},\!
\end{gather*}
with
$9$ arbitrary functions
$\alpha, \dots, \nu$ of
$y$. This
$F$ satisfies
$DF \equiv 0 \equiv \text{Monge}(F)$, and we show that the condition
$\text{Cartan}(H) \equiv 0 $ passes to a certain
$\text{Cartan}(F) \equiv 0$ which holds for any choice of
$\alpha(y), \dots, \nu(y)$. Descending to the leaf space quotient, we gain
$\infty$-dimensional
functionally parametrized and explicit families of Einstein–Weyl structures
$\big[ (g, A) \big]$ in
$3$D. These structures are nontrivial in the sense that
$\mathrm{d}A \not\equiv 0$ and
$\text{Cotton}([g]) \not \equiv 0$.
Ключевые слова:
Einstein–Weyl structures, Lorentzian metrics, para-CR structures, third-order ordinary differential equations, Monge invariant, Wünschmann invariant, Cartan's method of equivalence, exterior differential systems.
MSC: 83C15,
53C25,
83C20,
53C25,
53C10,
53C25,
53A30,
53A55,
34A26,
34C14,
58A15,
53-08 Поступила: 30 марта 2020 г.; в окончательном варианте
8 июня 2020 г.; опубликована
17 июня 2020 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2020.056