Аннотация:
Let $\Lambda^r_n$ be the path algebra of the linearly oriented quiver of type $\mathbb{A}$ with $n$ vertices modulo the $r$-th power of the radical, and let $\widetilde{\Lambda}^r_n$ be the path algebra of the cyclically oriented quiver of type $\widetilde{\mathbb{A}}$ with $n$ vertices modulo the $r$-th power of the radical. Adachi gave a recurrence relation for the number of $\tau$-tilting modules over $\Lambda^r_n$. In this paper, we show that the same recurrence relation also holds for the number of $\tau$-tilting modules over $\widetilde{\Lambda}^r_n$. As an application, we give a new proof for a result by Asai on recurrence formulae for the number of support $\tau$-tilting modules over $\Lambda^r_n$ and $\widetilde{\Lambda}^r_n$.
Ключевые слова:$\tau$-tilting modules, support $\tau$-tilting modules, Nakayama algebras.