RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 026, 10 стр. (Mi sigma1709)

Эта публикация цитируется в 1 статье

Mixed vs Stable Anti-Yetter–Drinfeld Contramodules

Ilya Shapiro

Department of Mathematics and Statistics, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada

Аннотация: We examine the cyclic homology of the monoidal category of modules over a finite dimensional Hopf algebra, motivated by the need to demonstrate that there is a difference between the recently introduced mixed anti-Yetter–Drinfeld contramodules and the usual stable anti-Yetter–Drinfeld contramodules. Namely, we show that Sweedler's Hopf algebra provides an example where mixed complexes in the category of stable anti-Yetter–Drinfeld contramodules (previously studied) are not equivalent, as differential graded categories to the category of mixed anti-Yetter–Drinfeld contramodules (recently introduced).

Ключевые слова: Hopf algebras, homological algebra, Taft algebras.

MSC: 16E35, 16T05, 18G90, 19D55

Поступила: 9 ноября 2020 г.; в окончательном варианте 4 марта 2021 г.; опубликована 17 марта 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.026



Реферативные базы данных:
ArXiv: 2010.02768


© МИАН, 2024