Аннотация:
We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $\sigma=(\sigma_1,\dots,\sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $\overline{f} \colon \mathbb{R}^m \to V$ such that $f = \sigma \circ \overline{f}$ is of class $C^{d-1,1}$
is locally of Sobolev class $W^{1,p}$ for all $1 \le p < d/(d-1)$. In the case $m=1$ there always exists a continuous choice $\overline{f}$ for given $f\colon \mathbb{R} \to \sigma(V) \subseteq \mathbb{C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $\overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $\overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Hölder class.
Ключевые слова:Sobolev lifting over invariants, complex representations of finite groups, $Q$-valued Sobolev functions.