RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 037, 31 стр. (Mi sigma1720)

Sobolev Lifting over Invariants

Adam Parusińskia, Armin Rainerb

a Université Côte d'Azur, CNRS, LJAD, UMR 7351, 06108 Nice, France
b Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

Аннотация: We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $\sigma=(\sigma_1,\dots,\sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $\overline{f} \colon \mathbb{R}^m \to V$ such that $f = \sigma \circ \overline{f}$ is of class $C^{d-1,1}$ is locally of Sobolev class $W^{1,p}$ for all $1 \le p < d/(d-1)$. In the case $m=1$ there always exists a continuous choice $\overline{f}$ for given $f\colon \mathbb{R} \to \sigma(V) \subseteq \mathbb{C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $\overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $\overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Hölder class.

Ключевые слова: Sobolev lifting over invariants, complex representations of finite groups, $Q$-valued Sobolev functions.

MSC: 22E45, 26A16, 46E35, 14L24

Поступила: 4 ноября 2020 г.; в окончательном варианте 29 марта 2021 г.; опубликована 10 апреля 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.037



Реферативные базы данных:
ArXiv: 2003.01967


© МИАН, 2024