RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 062, 39 стр. (Mi sigma1744)

Positive Scalar Curvature on Spin Pseudomanifolds: the Fundamental Group and Secondary Invariants

Boris Botvinnika, Paolo Piazzab, Jonathan Rosenbergc

a Department of Mathematics, University of Oregon, Eugene OR 97403-1222, USA
b Dipartimento di Matematica “Guido Castelnuovo”, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Roma, Italy
c Department of Mathematics, University of Maryland, College Park, MD 20742-4015, USA

Аннотация: In this paper we continue the study of positive scalar curvature (psc) metrics on a depth-1 Thom–Mather stratified space $M_\Sigma$ with singular stratum $\beta M$ (a closed manifold of positive codimension) and associated link equal to $L$, a smooth compact manifold. We briefly call such spaces manifolds with $L$-fibered singularities. Under suitable spin assumptions we give necessary index-theoretic conditions for the existence of wedge metrics of positive scalar curvature. Assuming in addition that $L$ is a simply connected homogeneous space of positive scalar curvature, $L=G/H$, with the semisimple compact Lie group $G$ acting transitively on $L$ by isometries, we investigate when these necessary conditions are also sufficient. Our main result is that our conditions are indeed sufficient for large classes of examples, even when $M_\Sigma$ and $\beta M$ are not simply connected. We also investigate the space of such psc metrics and show that it often splits into many cobordism classes.

Ключевые слова: positive scalar curvature, pseudomanifold, singularity, bordism, transfer, $K$-theory, index, rho-invariant.

MSC: 53C21, 58J22, 53C27, 19L41, 55N22, 58J28

Поступила: 26 мая 2020 г.; в окончательном варианте 8 июня 2021 г.; опубликована 24 июня 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.062



Реферативные базы данных:
ArXiv: 2005.02744


© МИАН, 2024