RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2021, том 17, 085, 33 стр. (Mi sigma1767)

Эта публикация цитируется в 6 статьях

Perturbative and Geometric Analysis of the Quartic Kontsevich Model

Johannes Branahla, Alexander Hockb, Raimar Wulkenhaara

a Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstr. 62, 48149 Münster, Germany
b Mathematical Institute, University of Oxford, Andrew Wiles Building, Woodstock Road, OX2 6GG, Oxford, UK

Аннотация: The analogue of Kontsevich's matrix Airy function, with the cubic potential $\operatorname{Tr}\big(\Phi^3\big)$ replaced by a quartic term $\operatorname{Tr}\big(\Phi^4\big)$ with the same covariance, provides a toy model for quantum field theory in which all correlation functions can be computed exactly and explicitly. In this paper we show that distinguished polynomials of correlation functions, themselves given by quickly growing series of Feynman ribbon graphs, sum up to much simpler and highly structured expressions. These expressions are deeply connected with meromorphic forms conjectured to obey blobbed topological recursion. Moreover, we show how the exact solutions permit to explore critical phenomena in the quartic Kontsevich model.

Ключевые слова: Dyson–Schwinger equations, perturbation theory, exact solutions, topological recursion.

MSC: 81T18, 81T16, 14H81, 32A20

Поступила: 26 февраля 2021 г.; в окончательном варианте 10 сентября 2021 г.; опубликована 16 сентября 2021 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2021.085



Реферативные базы данных:
ArXiv: 2012.02622


© МИАН, 2024