RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 039, 20 стр. (Mi sigma1833)

Doubly Exotic $N$th-Order Superintegrable Classical Systems Separating in Cartesian Coordinates

İsmet Yurduşena, Adrián Mauricio Escobar-Ruizb, Irlanda Palma y Meza Montoyab

a Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
b Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México, CDMX, 09340 México

Аннотация: Superintegrable classical Hamiltonian systems in two-dimensional Euclidean space $E_2$ are explored. The study is restricted to Hamiltonians allowing separation of variables $V(x,y)=V_1(x)+V_2(y)$ in Cartesian coordinates. In particular, the Hamiltonian $\mathcal H$ admits a polynomial integral of order $N>2$. Only doubly exotic potentials are considered. These are potentials where none of their separated parts obey any linear ordinary differential equation. An improved procedure to calculate these higher-order superintegrable systems is described in detail. The two basic building blocks of the formalism are non-linear compatibility conditions and the algebra of the integrals of motion. The case $N=5$, where doubly exotic confining potentials appear for the first time, is completely solved to illustrate the present approach. The general case $N>2$ and a formulation of inverse problem in superintegrability are briefly discussed as well.

Ключевые слова: integrability in classical mechanics, higher-order superintegrability, separation of variables, exotic potentials.

MSC: 70H06, 70H33, 70H50

Поступила: 18 декабря 2021 г.; в окончательном варианте 16 мая 2022 г.; опубликована 27 мая 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.039



Реферативные базы данных:
ArXiv: 2112.01735


© МИАН, 2024