Аннотация:
In this paper, we use the Mellin–Barnes–Watson method to relate solutions of a certain type of $q$-difference equations at $Q=0$ and $Q=\infty$. We consider two special cases; the first is the $q$-difference equation of $K$-theoretic $I$-function of the quintic, which is degree $25$; we use Adams' method to find the extra $20$ solutions at $Q=0$. The second special case is a fuchsian case, which is confluent to the differential equation of the cohomological $I$-function of the quintic. We compute the connection matrix and study the confluence of the $q$-difference structure.