RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 061, 21 стр. (Mi sigma1857)

Big and Nef Tautological Vector Bundles over the Hilbert Scheme of Points

Dragos Oprea

Department of Mathematics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, USA

Аннотация: We study tautological vector bundles over the Hilbert scheme of points on surfaces. For each $K$-trivial surface, we write down a simple criterion ensuring that the tautological bundles are big and nef, and illustrate it by examples. In the $K3$ case, we extend recent constructions and results of Bini, Boissière and Flamini from the Hilbert scheme of $2$ and $3$ points to an arbitrary number of points. Among the $K$-trivial surfaces, the case of Enriques surfaces is the most involved. Our techniques apply to other smooth projective surfaces, including blowups of $K3$s and minimal surfaces of general type, as well as to the punctual Quot schemes of curves.

Ключевые слова: Hilbert scheme, Quot scheme, tautological bundles.

MSC: 14C05, 14D20, 14C17

Поступила: 31 января 2022 г.; в окончательном варианте 31 июля 2022 г.; опубликована 12 августа 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.061



Реферативные базы данных:


© МИАН, 2024