RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2022, том 18, 075, 27 стр. (Mi sigma1871)

Эта публикация цитируется в 1 статье

Categorial Independence and Lévy Processes

Malte Gerholdab, Stephanie Lachsa, Michael Schürmanna

a Institute of Mathematics and Computer Science, University of Greifswald, Germany
b Department of Mathematical Sciences, NTNU Trondheim, Norway

Аннотация: We generalize Franz' independence in tensor categories with inclusions from two morphisms (which represent generalized random variables) to arbitrary ordered families of morphisms. We will see that this only works consistently if the unit object is an initial object, in which case the inclusions can be defined starting from the tensor category alone. The obtained independence for morphisms is called categorial independence. We define categorial Lévy processes on every tensor category with initial unit object and present a construction generalizing the reconstruction of a Lévy process from its convolution semigroup via the Daniell–Kolmogorov theorem. Finally, we discuss examples showing that many known independences from algebra as well as from (noncommutative) probability are special cases of categorial independence.

Ключевые слова: general independence, monoidal categories, synthetic probability, noncommutative probability, quantum stochastic processes.

MSC: 18D10, 60G20, 81R50

Поступила: 28 марта 2022 г.; в окончательном варианте 30 сентября 2022 г.; опубликована 10 октября 2022 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2022.075



Реферативные базы данных:
ArXiv: 1612.05139


© МИАН, 2024