Эта публикация цитируется в
1 статье
Noncolliding Macdonald Walks with an Absorbing Wall
Leonid Petrov University of Virginia, Charlottesville, VA, USA
Аннотация:
The branching rule is one of the most fundamental properties of the Macdonald symmetric polynomials. It expresses a Macdonald polynomial as a nonnegative linear combination of Macdonald polynomials with smaller number of variables. Taking a limit of the branching rule under the principal specialization when the number of variables goes to infinity, we obtain a Markov chain of
$m$ noncolliding particles with negative drift and an absorbing wall at zero. The chain depends on the Macdonald parameters
$(q,t)$ and may be viewed as a discrete deformation of the Dyson Brownian motion. The trajectory of the Markov chain is equivalent to a certain Gibbs ensemble of plane partitions with an arbitrary cascade front wall. In the Jack limit
$t=q^{\beta/2}\to1$ the absorbing wall disappears, and the Macdonald noncolliding walks turn into the
$\beta$-noncolliding random walks studied by Huang [
Int. Math. Res. Not. 2021 (2021), 5898–5942, arXiv:
1708.07115]. Taking
$q=0$ (Hall–Littlewood degeneration) and further sending
$t\to 1$, we obtain a continuous time particle system on
$\mathbb{Z}_{\ge0}$ with inhomogeneous jump rates and absorbing wall at zero.
Ключевые слова:
Macdonald polynomials, branching rule, noncolliding random walks, lozenge tilings.
MSC: 06C05,
05E05,
05A30 Поступила: 7 июня 2022 г.; в окончательном варианте
16 октября 2022 г.; опубликована
20 октября 2022 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2022.079