RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2005, том 1, 019, 17 стр. (Mi sigma19)

Эта публикация цитируется в 2 статьях

Transverse Evolution Operator for the Gross–Pitaevskii Equation in Semiclassical Approximation

Alexey Borisova, Alexander Shapovalovabc, Andrey Trifonovcb

a Tomsk State University, 36 Lenin Ave., 634050 Tomsk, Russia
b Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia
c Math. Phys. Laboratory, Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia

Аннотация: The Gross–Pitaevskii equation with a local cubic nonlinearity that describes a many-dimensional system in an external field is considered in the framework of the complex WKB–Maslov method. Analytic asymptotic solutions are constructed in semiclassical approximation in a small parameter $\hbar$, $\hbar\to 0$, in the class of functions concentrated in the neighborhood of an unclosed surface associated with the phase curve that describes the evolution of surface vertex. The functions of this class are of the one-soliton form along the direction of the surface normal. The general constructions are illustrated by examples.

Ключевые слова: WKB–Maslov complex germ method; semiclassical asymptotics; Gross–Pitaevskii equation; solitons; symmetry operators.

MSC: 81Q20; 81R30; 35Q55

Поступила: 27 июля 2005 г.; в окончательном варианте 13 ноября 2005 г.; опубликована 22 ноября 2005 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2005.019



Реферативные базы данных:
ArXiv: math-ph/0511081


© МИАН, 2024