RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 083, 28 стр. (Mi sigma1978)

Rigidity and Non-Rigidity of $\mathbb{H}^n/\mathbb{Z}^{n-2}$ with Scalar Curvature Bounded from Below

Tianze Haoa, Yuhao Huab, Peng Liua, Yuguang Shia

a Key Laboratory of Pure and Applied Mathematics, School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China
b School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China

Аннотация: We show that the hyperbolic manifold $\mathbb{H}^n/\mathbb{Z}^{n-2}$ is not rigid under all compactly supported deformations that preserve the scalar curvature lower bound $-n(n-1)$, and that it is rigid under deformations that are further constrained by certain topological conditions. In addition, we prove two related splitting results.

Ключевые слова: scalar curvature, rigidity, ALH manifolds, $\mu$-bubbles.

MSC: 53C21, 53C24

Поступила: 8 апреля 2023 г.; в окончательном варианте 20 октября 2023 г.; опубликована 1 ноября 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.083


ArXiv: 2303.15752


© МИАН, 2024