Аннотация:
We show that the hyperbolic manifold $\mathbb{H}^n/\mathbb{Z}^{n-2}$ is not rigid under all compactly supported deformations that preserve the scalar curvature lower bound $-n(n-1)$, and that it is rigid under deformations that are further constrained by certain topological conditions. In addition, we prove two related splitting results.