RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 100, 18 стр. (Mi sigma1995)

Jacobi Beta Ensemble and $b$-Hurwitz Numbers

Giulio Ruzzaab

a Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Campo Grande Edifício C6, 1749-016, Lisboa, Portugal
b Grupo de Física Matemática, Campo Grande Edifício C6, 1749-016, Lisboa, Portugal

Аннотация: We express correlators of the Jacobi $\beta$ ensemble in terms of (a special case of) $b$-Hurwitz numbers, a deformation of Hurwitz numbers recently introduced by Chapuy and Dołȩga. The proof relies on Kadell's generalization of the Selberg integral. The Laguerre limit is also considered. All the relevant $b$-Hurwitz numbers are interpreted (following Bonzom, Chapuy, and Dołȩga) in terms of colored monotone Hurwitz maps.

Ключевые слова: beta ensembles, Jack polynomials, Hurwitz numbers, combinatorial maps.

MSC: 15B52, 05E05, 05E16

Поступила: 3 июля 2023 г.; в окончательном варианте 29 ноября 2023 г.; опубликована 19 декабря 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.100


ArXiv: 2306.16323


© МИАН, 2024