RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2023, том 19, 104, 22 стр. (Mi sigma1999)

Szegő Kernel and Symplectic Aspects of Spectral Transform for Extended Spaces of Rational Matrices

Marco Bertola, Dmitry Korotkin, Ramtin Sasani

Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve W., Montréal, H3G 1M8 Québec, Canada

Аннотация: We revisit the symplectic aspects of the spectral transform for matrix-valued rational functions with simple poles. We construct eigenvectors of such matrices in terms of the Szegő kernel on the spectral curve. Using variational formulas for the Szegő kernel we construct a new system of action-angle variables for the canonical symplectic form on the space of such functions. Comparison with previously known action-angle variables shows that the vector of Riemann constants is the gradient of some function on the moduli space of spectral curves; this function is found in the case of matrix dimension 2, when the spectral curve is hyperelliptic.

Ключевые слова: spectral transform, Szegő kernel, variational formulas.

MSC: 53D30, 34M45

Поступила: 14 марта 2023 г.; в окончательном варианте 2 декабря 2023 г.; опубликована 22 декабря 2023 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2023.104


ArXiv: 2303.05602


© МИАН, 2024