RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 001, 8 стр. (Mi sigma2003)

A Note on the Equidistribution of 3-Colour Partitions

Joshua Malesab

a Heilbronn Institute for Mathematical Research, University of Bristol, Bristol, BS8 1UG, UK
b School of Mathematics, University of Bristol, Bristol, BS8 1TW, UK

Аннотация: In this short note, we prove equidistribution results regarding three families of three-colour partitions recently introduced by Schlosser and Zhou. To do so, we prove an asymptotic formula for the infinite product $F_{a,c}(\zeta ; {\rm e}^{-z}) := \prod_{n \geq 0} \big(1- \zeta {\rm e}^{-(a+cn)z}\big)$ ($a,c \in \mathbb{N}$ with $0<a\leq c$ and $\zeta$ a root of unity) when $z$ lies in certain sectors in the right half-plane, which may be useful in studying similar problems. As a corollary, we obtain the asymptotic behaviour of the three-colour partition families at hand.

Ключевые слова: asymptotics, partitions, Wright's circle method.

MSC: 11P82

Поступила: 25 июля 2023 г.; в окончательном варианте 28 декабря 2023 г.; опубликована 1 января 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.001


ArXiv: 2307.12955


© МИАН, 2024