RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 005, 26 стр. (Mi sigma2007)

Computing the Tracy–Widom Distribution for Arbitrary $\beta>0$

Thomas Trogdon, Yiting Zhang

Department of Applied Mathematics, University of Washington, Seattle, Washington, USA

Аннотация: We compute the Tracy–Widom distribution describing the asymptotic distribution of the largest eigenvalue of a large random matrix by solving a boundary-value problem posed by Bloemendal in his Ph.D. Thesis (2011). The distribution is computed in two ways. The first method is a second-order finite-difference method and the second is a highly accurate Fourier spectral method. Since $\beta$ is simply a parameter in the boundary-value problem, any $\beta> 0$ can be used, in principle. The limiting distribution of the $n$th largest eigenvalue can also be computed. Our methods are available in the Julia package TracyWidomBeta.jl.

Ключевые слова: numerical differential equation, Tracy–Widom distribution, Fourier transformation.

MSC: 65M06, 60B20, 60H25

Поступила: 19 апреля 2023 г.; в окончательном варианте 3 января 2024 г.; опубликована 13 января 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.005


ArXiv: 2304.04951


© МИАН, 2024