RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 023, 9 стр. (Mi sigma2025)

Lerch $\Phi$ Asymptotics

Adri B. Olde Daalhuis

School of Mathematics and Maxwell Institute for Mathematical Sciences, The University of Edinburgh, Edinburgh EH9 3FD, UK

Аннотация: We use a Mellin–Barnes integral representation for the Lerch transcendent $\Phi(z,s,a)$ to obtain large $z$ asymptotic approximations. The simplest divergent asymptotic approximation terminates in the case that $s$ is an integer. For non-integer $s$ the asymptotic approximations consists of the sum of two series. The first one is in powers of $(\ln z)^{-1}$ and the second one is in powers of $z^{-1}$. Although the second series converges, it is completely hidden in the divergent tail of the first series. We use resummation and optimal truncation to make the second series visible.

Ключевые слова: Hurwitz–Lerch zeta function, analytic continuation, asymptotic expansions.

MSC: 11M35, 30E15, 41A30, 41A60

Поступила: 22 ноября 2023 г.; в окончательном варианте 11 марта 2024 г.; опубликована 21 марта 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.023


ArXiv: 2311.11886


© МИАН, 2024