RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 041, 23 стр. (Mi sigma2043)

Skew Symplectic and Orthogonal Schur Functions

Naihuan Jinga, Zhijun Lib, Danxia Wangb

a Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
b School of Science, Huzhou University, Huzhou, Zhejiang 313000, P.R. China

Аннотация: Using the vertex operator representations for symplectic and orthogonal Schur functions, we define two families of symmetric functions and show that they are the skew symplectic and skew orthogonal Schur polynomials defined implicitly by Koike and Terada and satisfy the general branching rules. Furthermore, we derive the Jacobi–Trudi identities and Gelfand–Tsetlin patterns for these symmetric functions. Additionally, the vertex operator method yields their Cauchy-type identities. This demonstrates that vertex operator representations serve not only as a tool for studying symmetric functions but also offers unified realizations for skew Schur functions of types A, C, and D.

Ключевые слова: skew orthogonal/symplectic Schur functions, Jacobi–Trudi identity, Gelfand–Tsetlin patterns, vertex operators.

MSC: 05E05; 17B37

Поступила: 28 августа 2023 г.; в окончательном варианте 12 мая 2024 г.; опубликована 21 мая 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.041


ArXiv: 2208.05526


© МИАН, 2024