Аннотация:
We study the resurgent structure of the refined topological string partition function on a non-compact Calabi–Yau threefold, at large orders in the string coupling constant $g_s$ and fixed refinement parameter $\mathsf{b}$. For $\mathsf{b}\neq 1$, the Borel transform admits two families of simple poles,
corresponding to integral periods rescaled by $\mathsf{b}$ and $1/\mathsf{b}$. We show that the corresponding Stokes automorphism is expressed in terms of a generalization of the non-compact quantum dilogarithm, and we conjecture that the Stokes constants are determined by the refined Donaldson–Thomas invariants counting spin-$j$ BPS states. This jump in the refined topological string partition function is a special case (unit five-brane charge) of a more general transformation property of wave functions on quantum twisted tori introduced in earlier work by two of the authors. We show that this property follows from the transformation of a suitable refined dual partition function across BPS rays, defined by extending the Moyal star product to the realm of contact geometry.