RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2024, том 20, 074, 13 стр. (Mi sigma2076)

Asymptotics of the Humbert Function $\Psi_1$ for Two Large Arguments

Peng-Cheng Hang, Min-Jie Luo

Department of Mathematics, School of Mathematics and Statistics, Donghua University, Shanghai 201620, P.R. China

Аннотация: Recently, Wald and Henkel (2018) derived the leading-order estimate of the Humbert functions $\Phi_2$, $\Phi_3$ and $\Xi_2$ for two large arguments, but their technique cannot handle the Humbert function $\Psi_1$. In this paper, we establish the leading asymptotic behavior of the Humbert function $\Psi_1$ for two large arguments. Our proof is based on a connection formula of the Gauss hypergeometric function and Nagel's approach (2004). This approach is also applied to deduce asymptotic expansions of the generalized hypergeometric function $_pF_q$ $(p\leqslant q)$ for large parameters, which are not contained in NIST handbook.

Ключевые слова: Humbert function, asymptotics, generalized hypergeometric function.

MSC: 33C20, 33C65, 33C70, 41A60

Поступила: 27 марта 2024 г.; в окончательном варианте 2 августа 2024 г.; опубликована 9 августа 2024 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2024.074


ArXiv: 2403.14942


© МИАН, 2024