RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 084, 14 стр. (Mi sigma210)

Эта публикация цитируется в 7 статьях

Monogenic Functions in Conformal Geometry

Michael Eastwooda, John Ryanb

a Department of Mathematics, University of Adelaide, SA 5005, Australia
b Department of Mathematics, University of Arkansas, Fayetteville, AR 72701, USA

Аннотация: Monogenic functions are basic to Clifford analysis. On Euclidean space they are defined as smooth functions with values in the corresponding Clifford algebra satisfying a certain system of first order differential equations, usually referred to as the Dirac equation. There are two equally natural extensions of these equations to a Riemannian spin manifold only one of which is conformally invariant. We present a straightforward exposition.

Ключевые слова: Clifford analysis; monogenic functions; Dirac operator; conformal invariance.

MSC: 53A30; 58J70; 15A66

Поступила: 29 августа 2007 г.; опубликована 30 августа 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.084



Реферативные базы данных:
ArXiv: 0708.4172


© МИАН, 2024