RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 028, 21 стр. (Mi sigma2145)

Note on Exponents Associated with Y-Systems

Ryo Takenaka

Department of Mathematics, Osaka Metropolitan University, Osaka 558-8585, Japan

Аннотация: Let $(X_n,\ell)$ be the pair consisting of the Dynkin diagram of finite type $X_n$ and a positive integer $\ell\geq2$, called the level. Then we obtain the Y-system, which is the set of algebraic relations associated with this pair. Related to the Y-system, a sequence of integers called exponents is defined through a quiver derived from the pair $(X_n,\ell)$. Mizuno provided conjectured formulas for the exponents associated with Y-systems in [Mizuno Y., SIGMA 16 (2020), 028, 42 pages, arXiv:1812.05863]. In this paper, we study the exponents associated with level 2 Y-systems for classical Dynkin types. As a result, we present proofs of Mizuno's conjecture for $(B_n,2)$ and $(D_n,2)$, and give a reformulation for $(C_n,2)$.

Ключевые слова: cluster algebras, Y-systems, root systems.

MSC: 13F60, 17B22, 81R10

Поступила: 14 октября 2024 г.; в окончательном варианте 16 апреля 2025 г.; опубликована 24 апреля 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.028


ArXiv: 2410.02286


© МИАН, 2025