Аннотация:
We consider general integrable curve nets in Euclidean space as a particular integrable geometry invariant with respect to rigid motions and net-preserving reparameterisations. For the purpose of their description, we first give an overview of the most important second-order invariants and relations among them. As a particular integrable example, we reinterpret the result of I.S. Krasil'shchik and M. Marvan (see Section 2, Case 2 in [Acta Appl. Math.56 (1999), 217–230]) as a curve net satisfying an $\mathbb R$-linear relation between the Schief curvature of the net and the Gauss curvature of the supporting surface. In the special case when the curvatures are proportional (concordant nets), we find a correspondence to pairs of pseudospherical surfaces of equal negative constant Gaussian curvatures. Conversely, we also show that two generic pseudospherical surfaces of equal negative constant Gaussian curvatures induce a concordant Chebyshev net. The construction generalises the well-known correspondence between pairs of curves and translation surfaces.