RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 032, 32 стр. (Mi sigma2149)

Bilateral Bailey Lattices and Andrews–Gordon Type Identities

Jehanne Doussea, Frédéric Jouhetb, Isaac Konanb

a Université de Genève, 7–9, rue Conseil Général, 1205 Genève, Switzerland
b Univ Lyon, Université Claude Bernard Lyon 1, UMR5208, Institut Camille Jordan, 69622 Villeurbanne, France

Аннотация: We show that the Bailey lattice can be extended to a bilateral version in just a few lines from the bilateral Bailey lemma, using a very simple lemma transforming bilateral Bailey pairs relative to $a$ into bilateral Bailey pairs relative to $a/q$. Using this and similar lemmas, we give bilateral versions and simple proofs of other (new and known) Bailey lattices, including a Bailey lattice of Warnaar and the inverses of Bailey lattices of Lovejoy. As consequences of our bilateral point of view, we derive new $m$-versions of the Andrews–Gordon identities, Bressoud's identities, a new companion to Bressoud's identities, and the Bressoud–Göllnitz–Gordon identities. Finally, we give a new elementary proof of another very general identity of Bressoud using one of our Bailey lattices.

Ключевые слова: Bailey lemma, Bailey lattice, Andrews–Gordon identities, Bressoud identities, $q$-series, bilateral series.

MSC: 11P84, 05A30, 33D15, 33D90

Поступила: 15 октября 2024 г.; в окончательном варианте 11 апреля 2025 г.; опубликована 29 апреля 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.032


ArXiv: 2307.02346


© МИАН, 2025