Bilateral Bailey Lattices and Andrews–Gordon Type Identities
Jehanne Doussea,
Frédéric Jouhetb,
Isaac Konanb a Université de Genève, 7–9, rue Conseil Général, 1205 Genève, Switzerland
b Univ Lyon, Université Claude Bernard Lyon 1, UMR5208, Institut Camille Jordan, 69622 Villeurbanne, France
Аннотация:
We show that the Bailey lattice can be extended to a bilateral version in just a few lines from the bilateral Bailey lemma, using a very simple lemma transforming bilateral Bailey pairs relative to
$a$ into bilateral Bailey pairs relative to
$a/q$. Using this and similar lemmas, we give bilateral versions and simple proofs of other (new and known) Bailey lattices, including a Bailey lattice of Warnaar and the inverses of Bailey lattices of Lovejoy. As consequences of our bilateral point of view, we derive new
$m$-versions of the Andrews–Gordon identities, Bressoud's identities, a new companion to Bressoud's identities, and the Bressoud–Göllnitz–Gordon identities. Finally, we give a new elementary proof of another very general identity of Bressoud using one of our Bailey lattices.
Ключевые слова:
Bailey lemma, Bailey lattice, Andrews–Gordon identities, Bressoud identities,
$q$-series, bilateral series.
MSC: 11P84,
05A30,
33D15,
33D90 Поступила: 15 октября 2024 г.; в окончательном варианте
11 апреля 2025 г.; опубликована
29 апреля 2025 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2025.032