RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 033, 41 стр. (Mi sigma2150)

Uniformity of Strong Asymptotics in Angelesco Systems

Maxim L. Yattselev

Department of Mathematical Sciences, Indiana University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA

Аннотация: Let $ \mu_1 $ and $ \mu_2 $ be two complex-valued Borel measures on the real line such that $ \operatorname{supp} \mu_1 =[\alpha_1,\beta_1] < \operatorname{supp} \mu_2 =[\alpha_2,\beta_2] $ and $ {\rm d}\mu_i(x) = -\rho_i(x){\rm d}x/2\pi\mathrm{i}$, where $ \rho_i(x) $ is the restriction to $ [\alpha_i,\beta_i] $ of a function non-vanishing and holomorphic in some neighborhood of $ [\alpha_i,\beta_i] $. Strong asymptotics of multiple orthogonal polynomials is considered as their multi-indices $ (n_1,n_2) $ tend to infinity in both coordinates. The main goal of this work is to show that the error terms in the asymptotic formulae are uniform with respect to $ \min\{n_1,n_2\} $.

Ключевые слова: multiple orthogonal polynomials, Angelesco systems, strong asymptotics, Riemann–Hilbert analysis.

MSC: 42C05, 41A20, 41A25

Поступила: 8 ноября 2024 г.; в окончательном варианте 28 апреля 2025 г.; опубликована 8 мая 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.033


ArXiv: 2411.04206


© МИАН, 2025