Аннотация:
We classify all possible occurrences of Kazama–Suzuki duality between the ${N=2}$ superconformal algebra $L^{N=2}_c$ and the subregular $\mathcal{W}$-algebra $\mathcal{W}_{k}(\mathfrak{sl}_4, f_{\rm sub})$. We establish a new Kazama–Suzuki duality between the subregular $\mathcal{W}$-algebra $\mathcal{W}_k(\mathfrak{sl}_4, f_{\rm sub})$ and the $N = 2$ superconformal algebra $L^{N=2}_{c}$ for $c=-15$. As a consequence of the duality, we classify the irreducible $\mathcal{W}_{k=-1}(\mathfrak{sl}_4, f_{\rm sub})$-modules.