RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 037, 20 стр. (Mi sigma2154)

The Stacey–Roberts Lemma for Banach Manifolds

Peter Kristela, Alexander Schmedingb

a Cyberagentur, Große Steinstraße 19, 06108 Halle (Saale), Germany
b NTNU Trondheim, Alfred Getz’ vei 1, Trondheim, Norway

Аннотация: The Stacey–Roberts lemma states that a surjective submersion between finite-dimensional manifolds gives rise to a submersion on infinite-dimensional manifolds of smooth mappings by pushforward. This result is foundational for many constructions in infinite-dimensional differential geometry such as the construction of Lie groupoids of smooth mappings. We generalise the Stacey–Roberts lemma to Banach manifolds which admit smooth partitions of unity. The new approach also remedies an error in the original proof of the result for the purely finite-dimensional setting.

Ключевые слова: manifold of mappings, submersion, connection, Stacey–Roberts lemma, spray, anchored Banach bundle, Banach manifold.

MSC: 58D15, 58B20, 58B10, 53C05

Поступила: 27 ноября 2024 г.; в окончательном варианте 7 мая 2025 г.; опубликована 18 мая 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.037


ArXiv: 2411.00587


© МИАН, 2025