RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 038, 65 стр. (Mi sigma2155)

1D Landau–Ginzburg Superpotential of Big Quantum Cohomology of $\mathbb{CP}^2$

Guilherme F. Almeidaab

a Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
b Mannheim University, Mannheim, Germany

Аннотация: Using the inverse period map of the Gauss–Manin connection associated with $QH^{*}\bigl(\mathbb{CP}^2\bigr)$ and the Dubrovin construction of Landau–Ginzburg superpotential for Dubrovin–Frobenius manifolds, we construct a one-dimensional Landau–Ginzburg superpotential for the quantum cohomology of $\mathbb{CP}^2$. In the case of small quantum cohomology, the Landau–Ginzburg superpotential is expressed in terms of the cubic root of the $j$-invariant function. For big quantum cohomology, the one-dimensional Landau–Ginzburg superpotential is given by Taylor series expansions whose coefficients are expressed in terms of quasi-modular forms. Furthermore, we express the Landau–Ginzburg superpotential for both small and big quantum cohomology of $QH^{*}\bigl(\mathbb{CP}^2\bigr)$ in closed form as the composition of the Weierstrass $\wp$-function and the universal coverings of $\mathbb{C} \setminus \bigl(\mathbb{Z} \oplus {\rm e}^{\frac{\pi {\rm i}}{3}}\mathbb{Z}\bigr)$ and $\mathbb{C} \setminus (\mathbb{Z} \oplus z\mathbb{Z})$, respectively.

Ключевые слова: Dubrovin–Frobenius manifolds, big quantum cohomology, Landau–Ginzburg superpotential.

MSC: 53D45

Поступила: 16 февраля 2024 г.; в окончательном варианте 12 мая 2025 г.; опубликована 30 мая 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.038


ArXiv: 2402.09574


© МИАН, 2025