RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 040, 48 стр. (Mi sigma2157)

Эта публикация цитируется в 1 статье

Integrable Dynamics in Projective Geometry via Dimers and Triple Crossing Diagram Maps on the Cylinder

Niklas Christoph Affolterabc, Terrence Georged, Sanjay Ramassamye

a Département de mathématiques et applications, École Normale Supérieure, CNRS, PSL University, 45 rue d'Ulm, 75005 Paris, France
b Institute of Discrete Mathematics and Geometry, TU Wien, Wiedner Hauptstraße 8–10/104, 1040 Wien, Austria
c Technische Universität Berlin, Institute of Mathematics, Strasse des 17. Juni 136, 10623 Berlin, Germany
d Department of Mathematics, UCLA, 520 Portola Plaza, Los Angeles, CA 90095, USA
e Université Paris-Saclay, CNRS, CEA, Institut de Physique Théorique, 91191 Gif-sur-Yvette, France

Аннотация: We introduce twisted triple crossing diagram maps, collections of points in projective space associated to bipartite graphs on the cylinder, and use them to provide geometric realizations of the cluster integrable systems of Goncharov and Kenyon constructed from toric dimer models. Using this notion, we provide geometric proofs that the pentagram map and the cross-ratio dynamics integrable systems are cluster integrable systems. We show that in appropriate coordinates, cross-ratio dynamics is described by geometric $R$-matrices, which solves the open question of finding a cluster algebra structure describing cross-ratio dynamics.

Ключевые слова: discrete integrable systems, dimer model, cluster algebras, pentagram map, triple crossing diagram maps.

MSC: 37J70, 82B20, 13F60

Поступила: 23 декабря 2024 г.; в окончательном варианте 20 мая 2025 г.; опубликована 3 июня 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.040


ArXiv: 2108.12692


© МИАН, 2025