RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 041, 41 стр. (Mi sigma2158)

Twisted Fusion Products and Quantum Twisted $Q$-Systems

Mingyan Simon Lin

Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, #01-01 CleanTech Two Block B, Singapore 636732, Republic of Singapore

Аннотация: We obtain a complete characterization of the space of matrix elements dual to the graded multiplicity space arising from fusion products of Kirillov–Reshetikhin modules over special twisted current algebras defined by Kus and Venkatesh, which generalizes the result of Ardonne and Kedem to the special twisted current algebras. We also prove the conjectural identity of $q$-graded fermionic sums by Hatayama et al. for the special twisted current algebras, from which we deduce that the graded tensor product multiplicities of the fusion products of Kirillov–Reshetikhin modules over special twisted current algebras are both given by the $q$-graded fermionic sums, and constant term evaluations of products of solutions of the quantum twisted $Q$-systems obtained by Di Francesco and Kedem.

Ключевые слова: twisted $Q$-systems, quantum $Q$-systems, Kirillov–Reshetikhin modules, fusion products.

MSC: 17B37, 13F60

Поступила: 14 октября 2024 г.; в окончательном варианте 21 мая 2025 г.; опубликована 10 июня 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.041


ArXiv: 2410.08657


© МИАН, 2025