RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 044, 25 стр. (Mi sigma2161)

On Complex Lie Algebroids with Constant Real Rank

Dan Aguero

Scuola Internazionale Superiore di Studi Avanzati - SISSA, Via Bonomea, 265, 34136 Trieste, Italy

Аннотация: We associate a real distribution to any complex Lie algebroid that we call distribution of real elements and a new invariant that we call real rank, given by the pointwise rank of this distribution. When the real rank is constant, we obtain a real Lie algebroid inside the original complex Lie algebroid. Under another regularity condition, we associate a complex Lie subalgebroid that we call the minimal complex subalgebroid. We also provide a local splitting for complex Lie algebroids with constant real rank. In the last part, we introduce the complex matched pair of skew-algebroids; these pairs produce complex Lie algebroid structures on the complexification of a vector bundle. We use this operation to characterize all the complex Lie algebroid structures on the complexification of real vector bundles.

Ключевые слова: complex Lie algebroids, Poisson geometry, normal forms.

MSC: 53D20

Поступила: 30 сентября 2024 г.; в окончательном варианте 2 июня 2025 г.; опубликована 13 июня 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.044


ArXiv: 2401.05274


© МИАН, 2025