Аннотация:
We associate a real distribution to any complex Lie algebroid that we call distribution of real elements and a new invariant that we call real rank, given by the pointwise rank of this distribution. When the real rank is constant, we obtain a real Lie algebroid inside the original complex Lie algebroid. Under another regularity condition, we associate a complex Lie subalgebroid that we call the minimal complex subalgebroid. We also provide a local splitting for complex Lie algebroids with constant real rank. In the last part, we introduce the complex matched pair of skew-algebroids; these pairs produce complex Lie algebroid structures on the complexification of a vector bundle. We use this operation to characterize all the complex Lie algebroid structures on the complexification of real vector bundles.
Ключевые слова:
complex Lie algebroids, Poisson geometry, normal forms.