RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 046, 49 стр. (Mi sigma2163)

Correlated Gromov–Witten Invariants

Thomas Blommea, Francesca Caroccib

a Université de Neuchátel, rue Émile Argan 11, Neuchátel 2000, Switzerland
b Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133, Italy

Аннотация: We introduce a geometric refinement of Gromov–Witten invariants for $\mathbb P^1$-bundles relative to the natural fiberwise boundary structure. We call these refined invariant correlated Gromov–Witten invariants. Furthermore, we prove a refinement of the degeneration formula keeping track of the correlation. Finally, combining certain invariance properties of the correlated invariant, a local computation and the refined degeneration formula we follow floor diagram techniques to prove regularity results for the generating series of the invariants in the case of $\mathbb P^1$-bundles over elliptic curves. Such invariants are expected to play a role in the degeneration formula for reduced Gromov–Witten invariants for abelian and K3 surfaces.

Ключевые слова: Gromov–Witten invariants, enumerative geometry, elliptic curves, decomposition formula.

MSC: 14N35, 14N10, 14J26

Поступила: 24 сентября 2024 г.; в окончательном варианте 9 июня 2025 г.; опубликована 18 июня 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.046


ArXiv: 2409.09472


© МИАН, 2025