RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 055, 18 стр. (Mi sigma2172)

Hyperdeterminantal Total Positivity

Kenneth W. Johnsona, Donald St. Richardsb

a Department of Mathematics, Pennsylvania State University, Abington, Pennsylvania 19001, USA
b Department of Statistics, Pennsylvania State University, University Park, PA 16802, USA

Аннотация: For a given positive integer $m$, the concept of hyperdeterminantal total positivity is defined for a kernel $K\colon {\mathbb R}^{2m} \to {\mathbb R}$, thereby generalizing the classical concept of total positivity. Extending the fundamental example, $K(x,y) = \exp(xy)$, $x, y \in \mathbb{R}$, of a classical totally positive kernel, the hyperdeterminantal total positivity property of the kernel $K(x_1,\dots,x_{2m}) = \exp(x_1\cdots x_{2m})$, $x_1,\dots,x_{2m} \in \mathbb{R}$ is established. By applying Matsumoto's hyperdeterminantal Binet–Cauchy formula, we derive a generalization of Karlin's basic composition formula; then we use the generalized composition formula to construct several examples of hyperdeterminantal totally positive kernels. Further generalizations of hyperdeterminantal total positivity by means of the theory of finite reflection groups are described and some open problems are posed.

Ключевые слова: Binet–Cauchy formula, determinant, generalized hypergeometric functions of matrix argument, Haar measure, hyperdeterminant, Schur function, unitary group, zonal polynomials.

MSC: 33C20, 05E05, 15A15, 15A72, 33C80

Поступила: 4 декабря 2024 г.; в окончательном варианте 3 июля 2025 г.; опубликована 11 июля 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.055


ArXiv: 2412.03000


© МИАН, 2025