RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 057, 24 стр. (Mi sigma2174)

Hilbert Series of $S_3$-Quasi-Invariant Polynomials in Characteristics $2, 3$

Frank Wang, Eric Yee

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Аннотация: We compute the Hilbert series of the space of $n=3$ variable quasi-invariant polynomials in characteristic $2$ and $3$, capturing the dimension of the homogeneous components of the space, and explicitly describe the generators in the characteristic 2 case. In doing so we extend the work of the first author in 2023 on quasi-invariant polynomials in characteristic $p>n$ and prove that a sufficient condition found by Ren–Xu in 2020 on when the Hilbert series differs between characteristic $0$ and $p$ is also necessary for $n=3$, $p=2,3$. This is the first description of quasi-invariant polynomials in the case, where the space forms a modular representation over the symmetric group, bringing us closer to describing the quasi-invariant polynomials in all characteristics and numbers of variables.

Ключевые слова: quasi-invariant polynomials, modular representation theory.

MSC: 81R12, 13A50, 20C08

Поступила: 31 января 2025 г.; в окончательном варианте 2 июля 2025 г.; опубликована 13 июля 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.057


ArXiv: 2412.20673


© МИАН, 2025