RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 072, 7 стр. (Mi sigma2188)

Ricci-Flat Manifolds, Parallel Spinors and the Rosenberg Index

Thomas Tony

Institute of Mathematics, University of Potsdam, Germany

Аннотация: Every closed connected Riemannian spin manifold of non-zero $\hat{A}$-genus or non-zero Hitchin invariant with non-negative scalar curvature admits a parallel spinor, in particular is Ricci-flat. In this note, we generalize this result to closed connected spin manifolds of non-vanishing Rosenberg index. This provides a criterion for the existence of a parallel spinor on a finite covering and yields that every closed connected Ricci-flat spin manifold of dimension $\geq 2$ with non-vanishing Rosenberg index has special holonomy.

Ключевые слова: Ricci-flat manifolds, special holonomy, parallel spinor, scalar curvature, higher index theory.

MSC: 53C29, 58J20, 53C21, 58B34

Поступила: 19 мая 2025 г.; в окончательном варианте 21 августа 2025 г.; опубликована 25 августа 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.072


ArXiv: 2411.03882


© МИАН, 2025