RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 073, 30 стр. (Mi sigma2189)

$\widehat{Z}$ and Splice Diagrams

Sergei Gukova, Ludmil Katzarkovb, Josef Svobodaa

a Department of Mathematics, California Institute of Technology, Pasadena, CA 91125, USA
b Department of Mathematics, University of Miami, Coral Gables, FL 33146, USA

Аннотация: We study quantum $q$-series invariants of 3-manifolds $\widehat{Z}_\sigma$ of Gukov–Pei–Putrov–Vafa, using techniques from the theory of normal surface singularities such as splice diagrams. We show that the (suitably normalized) sum of all $\widehat{Z}_\sigma$ depends only on the splice diagram, and in particular, it agrees for manifolds with the same universal abelian cover. We use these ideas to find simple formulas for $\widehat{Z}_\sigma$ invariants of Seifert manifolds. Applications include a better understanding of the vanishing of the $q$-series $\widehat{Z}_\sigma$. Additionally, we study moduli spaces of flat $\operatorname{SL}_2(\mathbb{C})$ connections on Seifert manifolds and their relation to spectra of surface singularities, extending a result of Boden and Curtis for Brieskorn spheres to Seifert rational homology spheres with 3 singular fibers and to Seifert homology spheres with any number of fibers.

Ключевые слова: $3$-manifold topology, quantum invariant, surface singularity, splice diagram.

MSC: 57K31, 32S50, 32S25, 32S55

Поступила: 22 ноября 2024 г.; в окончательном варианте 16 августа 2025 г.; опубликована 26 августа 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.073


ArXiv: 2304.00699


© МИАН, 2025