Аннотация:
We compute the genus $0$ free energy for the $2$-matrix model with quartic interactions, which acts as a generating function for the Ising model's partition function on a random, $4$-regular, planar graph. This is consistent with the predictions of Kazakov and Boulatov on this model, as well as subsequent confirmation of this formula using combinatorial methods. We also provide a new parametric formula for the free energy and give a characterization of the phase space. Our analysis is based on a steepest descent Riemann–Hilbert analysis of the associated biorthogonal polynomials and the corresponding isomonodromic $\tau$-function. A key ingredient in the analysis is a parametrization of the spectral curve. This analysis lays the groundwork for the subsequent study of the multicritical point, which we will study in a forthcoming work.