RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 086, 42 стр. (Mi sigma2202)

Quasi-Polynomial Extensions of Nonsymmetric Macdonald–Koornwinder Polynomials

Jasper Stokman

KdV Institute for Mathematics, University of Amsterdam, Science Park 105-107, 1098 XG Amsterdam, The Netherlands

Аннотация: In a recent joint paper with S. Sahi and V. Venkateswaran (2025), families of actions of the double affine Hecke algebra on spaces of quasi-polynomials were introduced. These so-called quasi-polynomial representations led to the introduction of quasi-polynomial extensions of the nonsymmetric Macdonald polynomials, which reduce to metaplectic Iwahori–Whittaker functions in the $\mathfrak{p}$-adic limit. In this paper, these quasi-polynomial representations are extended to Sahi's $5$-parameter double affine Hecke algebra, and the quasi-polynomial extensions of the nonsymmetric Koornwinder polynomials are introduced.

Ключевые слова: double affine Hecke algebras, Macdonald–Koornwinder polynomials.

MSC: 33D80, 20C08

Поступила: 26 марта 2025 г.; в окончательном варианте 6 октября 2025 г.; опубликована 14 октября 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.086


ArXiv: 2405.10609


© МИАН, 2025