RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 093, 19 стр. (Mi sigma2209)

Stolz Positive Scalar Curvature Structure Groups, Proper Actions and Equivariant $2$-Types

Massimiliano Puglisia, Thomas Schickb, Vito Felice Zenobic

a Dipartimento di Matematica, Sapienza Università di Roma, Italy
b Mathematisches Institut, Universität Göttingen, Germany
c Istituto Nazionale di Alta Matematica, Piazzale Aldo Moro 5, 00185 Roma, Italy

Аннотация: In this note, we study equivariant versions of Stolz' $R$-groups, the positive scalar curvature structure groups $R^{\mathrm spin}_n(X)^G$, for proper actions of discrete groups $G$. We define the concept of a fundamental groupoid functor for a $G$-space, encapsulating all the fundamental group information of all the fixed point sets and their relations. We construct classifying spaces for fundamental groupoid functors. As a geometric result, we show that Stolz' equivariant $R$-group $R^{\mathrm spin}_n(X)^G$ depends only on the fundamental groupoid functor of the reference space $X$. The proof covers at the same time in a concise and clear way the classical non-equivariant case.

Ключевые слова: positive scalar curvature, universal space for proper actions, spin bordism, fundamental groupoid.

MSC: 57R91, 57R90, 53C27, 53C21

Поступила: 11 февраля 2025 г.; в окончательном варианте 19 октября 2025 г.; опубликована 30 октября 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.093


ArXiv: 2412.07955


© МИАН, 2025