Эта публикация цитируется в
12 статьях
Stanilov–Tsankov–Videv Theory
Miguel Brozos-Vázquez a ,
Bernd Fiedler b ,
Eduardo García-Río a ,
Peter Gilkey c ,
Stana Nikčević d ,
Grozio Stanilov e ,
Yulian Tsankov e ,
Ramón Vázquez-Lorenzo a ,
Veselin Videv f a Department of Geometry and Topology, Faculty of Mathematics, University of Santiago de Compostela, Santiago de Compostela 15782, Spain
b Eichelbaumstr. 13, D-04249 Leipzig, Germany
c Mathematics Department, University of Oregon, Eugene Oregon 97403-1222, USA
d Mathematical Institute, SANU, Knez Mihailova 35, p.p. 367, 11001 Belgrade, Serbia
e Sofia University "St. Kl. Ohridski", Sofia, Bulgaria
f Mathematics Department, Thracian University, University Campus,
6000 Stara Zagora, Bulgaria
Аннотация:
We survey some recent results concerning Stanilov–Tsankov–Videv theory, conformal Osserman geometry,
and Walker geometry which relate algebraic properties of the curvature operator to the underlying geometry of
the manifold.
Ключевые слова:
algebraic curvature tensor; anti-self-dual; conformal Jacobi operator; conformal Osserman manifold; Jacobi operator; Jacobi–Tsankov; Jacobi–Videv; mixed-Tsankov; Osserman manifold; Ricci operator; self-dual; skew-symmetric curvature operator; skew-Tsankov; skew-Videv; Walker manifold; Weyl conformal curvature operator.
MSC: 53B20 Поступила: 7 августа 2007 г. ; в окончательном варианте
22 сентября 2007 г. ; опубликована
28 сентября 2007 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2007.095
© , 2024