Toda-Type Presentations for the Quantum K Theory of Partial Flag Varieties
Kamyar Aminia,
Irit Huq-Kuruvillab,
Leonardo C. Mihalceaa,
Daniel Orra,
Weihong Xuc a Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
b Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building,
No. 1, Sec. 4, Roosevelt Road, Da-an, Taipei 106319, Taiwan
c Division of Physics, Mathematics, and Astronomy, Caltech, 1200 E. California Blvd.,
Pasadena, CA 91125, USA
Аннотация:
We prove a determinantal, Toda-type, presentation for the equivariant K theory of a partial flag variety
${\mathrm Fl}(r_1, \dots, r_k;n)$. The proof relies on pushing forward the Toda presentation obtained by Maeno, Naito and Sagaki for the complete flag variety
${\mathrm Fl}(n)$, via Kato's
${\mathrm K}_T({\mathrm pt})$-algebra homomorphism from the quantum K ring of
${\mathrm Fl}(n)$ to that of
${\mathrm Fl}(r_1, \dots, r_k;n)$. Starting instead from the Whitney presentation for
${\mathrm Fl}(n)$, we show that the same pushforward technique gives a recursive formula for polynomial representatives of quantum K Schubert classes in any partial flag variety which do not depend on quantum parameters. In an appendix, we include another proof of the Toda presentation for the equivariant quantum K ring of
${\mathrm Fl}(n)$, following Anderson, Chen, and Tseng, which is based on the fact that the
${\mathrm K}$-theoretic
$J$-function is an eigenfunction of the finite difference Toda Hamiltonians.
Ключевые слова:
quantum K theory, partial flag varieties, Toda lattice.
MSC: 14M15,
14N35,
37K10,
05E05 Поступила: 16 апреля 2025 г.; в окончательном варианте
10 ноября 2025 г.; опубликована
20 ноября 2025 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2025.098