RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2025, том 21, 098, 26 стр. (Mi sigma2214)

Toda-Type Presentations for the Quantum K Theory of Partial Flag Varieties

Kamyar Aminia, Irit Huq-Kuruvillab, Leonardo C. Mihalceaa, Daniel Orra, Weihong Xuc

a Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA
b Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Da-an, Taipei 106319, Taiwan
c Division of Physics, Mathematics, and Astronomy, Caltech, 1200 E. California Blvd., Pasadena, CA 91125, USA

Аннотация: We prove a determinantal, Toda-type, presentation for the equivariant K theory of a partial flag variety ${\mathrm Fl}(r_1, \dots, r_k;n)$. The proof relies on pushing forward the Toda presentation obtained by Maeno, Naito and Sagaki for the complete flag variety ${\mathrm Fl}(n)$, via Kato's ${\mathrm K}_T({\mathrm pt})$-algebra homomorphism from the quantum K ring of ${\mathrm Fl}(n)$ to that of ${\mathrm Fl}(r_1, \dots, r_k;n)$. Starting instead from the Whitney presentation for ${\mathrm Fl}(n)$, we show that the same pushforward technique gives a recursive formula for polynomial representatives of quantum K Schubert classes in any partial flag variety which do not depend on quantum parameters. In an appendix, we include another proof of the Toda presentation for the equivariant quantum K ring of ${\mathrm Fl}(n)$, following Anderson, Chen, and Tseng, which is based on the fact that the ${\mathrm K}$-theoretic $J$-function is an eigenfunction of the finite difference Toda Hamiltonians.

Ключевые слова: quantum K theory, partial flag varieties, Toda lattice.

MSC: 14M15, 14N35, 37K10, 05E05

Поступила: 16 апреля 2025 г.; в окончательном варианте 10 ноября 2025 г.; опубликована 20 ноября 2025 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2025.098


ArXiv: 2504.07412


© МИАН, 2025