RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2007, том 3, 122, 17 стр. (Mi sigma248)

Эта публикация цитируется в 7 статьях

Some Progress in Conformal Geometry

Sun-Yung A. Changa, Jie Qingb, Paul Yanga

a Department of Mathematics, Princeton University, Princeton, NJ 08540, USA
b Department of Mathematics, University of California, Santa Cruz, Santa Cruz, CA 95064, USA

Аннотация: This is a survey paper of our current research on the theory of partial differential equations in conformal geometry. Our intention is to describe some of our current works in a rather brief and expository fashion. We are not giving a comprehensive survey on the subject and references cited here are not intended to be complete. We introduce a bubble tree structure to study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying some global conformal bounds on compact manifolds of dimension 4. As applications, we establish a gap theorem, a finiteness theorem for diffeomorphism type for this class, and diameter bound of the $\sigma _2$-metrics in a class of conformal 4-manifolds. For conformally compact Einstein metrics we introduce an eigenfunction compactification. As a consequence we obtain some topological constraints in terms of renormalized volumes.

Ключевые слова: Bach flat metrics; bubble tree structure; degeneration of metrics; conformally compact; Einstein; renormalized volume.

MSC: 53A30; 53C20; 35J60

Поступила: 30 августа 2007 г.; в окончательном варианте 7 декабря 2007 г.; опубликована 17 декабря 2007 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2007.122



Реферативные базы данных:
ArXiv: 0712.2794


© МИАН, 2024