RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2008, том 4, 017, 19 стр. (Mi sigma270)

Эта публикация цитируется в 14 статьях

Branching Laws for Some Unitary Representations of $\mathrm{SL}(4,\mathbb R)$

Bent Ørsteda, Birgit Spehb

a Department of Mathematics, University of Aarhus, Aarhus, Denmark
b Department of Mathematics, 310 Malott Hall, Cornell University, Ithaca, NY 14853-4201, USA

Аннотация: In this paper we consider the restriction of a unitary irreducible representation of type $A_{\mathfrak q}(\lambda)$ of $GL(4,\mathbb R)$ to reductive subgroups $H$ which are the fixpoint sets of an involution. We obtain a formula for the restriction to the symplectic group and to $GL(2,\mathbb C)$, and as an application we construct in the last section some representations in the cuspidal spectrum of the symplectic and the complex general linear group. In addition to working directly with the cohmologically induced module to obtain the branching law, we also introduce the useful concept of pseudo dual pairs of subgroups in a reductive Lie group.

Ключевые слова: semisimple Lie groups; unitary representation; branching laws.

MSC: 22E47; 11F70

Поступила: 10 сентября 2007 г.; в окончательном варианте 27 января 2008 г.; опубликована 7 февраля 2008 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2008.017



Реферативные базы данных:
ArXiv: 0802.0974


© МИАН, 2024