Эта публикация цитируется в
7 статьях
The PBW Filtration, Demazure Modules and Toroidal Current Algebras
Evgeny Feiginab a I. E. Tamm Department of Theoretical Physics, Lebedev Physics Institute, Leninski Prospect 53, Moscow, 119991, Russia
b Mathematical Institute, University of Cologne, Weyertal 86-90, D-50931, Cologne, Germany
Аннотация:
Let
$L$ be the basic (level one vacuum) representation of the affine Kac–Moody Lie algebra
$\widehat{\mathfrak g}$. The
$m$-th space
$F_m$ of the PBW filtration on
$L$ is a linear span of vectors of the form
$x_1\cdots x_lv_0$, where
$l\le m$,
$x_i\in\widehat{\mathfrak g}$ and
$v_0$ is a highest weight vector of
$L$. In this paper we give two descriptions of the associated graded space
$L^{\mathrm{gr}}$ with respect to the PBW filtration. The “top-down” description deals with a structure of
$L^{\mathrm{gr}}$ as
a representation of the abelianized algebra of generating operators. We prove that the ideal of relations is generated by the coefficients of the squared field
$e_\theta(z)^2$, which corresponds to the longest root
$\theta$. The “bottom-up” description deals with the structure of
$L^{\mathrm{gr}}$ as a representation of the current algebra
$\mathfrak g\otimes\mathbb C[t]$. We prove that each quotient
$F_m/F_{m-1}$ can be filtered by graded deformations of the tensor products of
$m$ copies of
$\mathfrak g$.
Ключевые слова:
affine Kac–Moody algebras; integrable representations; Demazure modules.
MSC: 17B67 Поступила: 4 июля 2008 г.; в окончательном варианте
6 октября 2008 г.; опубликована
14 октября 2008 г.
Язык публикации: английский
DOI:
10.3842/SIGMA.2008.070