RUS  ENG
Полная версия
ЖУРНАЛЫ // Symmetry, Integrability and Geometry: Methods and Applications // Архив

SIGMA, 2009, том 5, 087, 40 стр. (Mi sigma433)

Эта публикация цитируется в 10 статьях

Variations of Hodge Structure Considered as an Exterior Differential System: Old and New Results

Mark Greena, James Carlsonb, Phillip Griffithsc

a University of California, Los Angeles, CA, United States
b Clay Mathematics Institute, United States
c The Institute for Advanced Study, Princeton, NJ, United States

Аннотация: This paper is a survey of the subject of variations of Hodge structure (VHS) considered as exterior differential systems (EDS). We review developments over the last twenty-six years, with an emphasis on some key examples. In the penultimate section we present some new results on the characteristic cohomology of a homogeneous Pfaffian system. In the last section we discuss how the integrability conditions of an EDS affect the expected dimension of an integral submanifold. The paper ends with some speculation on EDS and Hodge conjecture for Calabi–Yau manifolds.

Ключевые слова: exterior differential systems; variation of Hodge structure, Noether–Lefschetz locus; period domain; integral manifold; Hodge conjecture; Pfaffian system; Chern classes; characteristic cohomology; Cartan–Kähler theorem.

MSC: 14C30; 58A15

Поступила: 20 апреля 2009 г.; в окончательном варианте 31 августа 2009 г.; опубликована 11 сентября 2009 г.

Язык публикации: английский

DOI: 10.3842/SIGMA.2009.087



Реферативные базы данных:
ArXiv: 0909.2201


© МИАН, 2024